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Abstract. Explicit expressions are obtained for Newton's solution to the inverse scattering 
problem in the approximations where up to two phase shifts are treated exactly and the rest 
to first order. 

1. Introduction and discussion 

Results of two-particle elastic scattering experiments provide insufficient data for the 
prediction of three-particle scattering, since in the latter case the two-particle subsys- 
tems need not conserve energy. Thus there is practical interest in the inverse scattering 
problem of constructing potentials which yield a given set of phase shifts. The only 
practicable scheme is that due to Newton (1962) and Sabatier (1966), who assume 
knowledge of all the phase shifts at a given energy. The result is a wide class of 
phase-equivalent potentials, most of them, however, having unattractive features such 
as oscillating long-range tails, non-analyticity, etc. All have the property of being 
extremely difficult to calculate, let alone use within another calculation. 

The only physically reasonable case for which manageable expressions are available 
is the original potential of Newton (1962). This has been used by Underhill (1970) to 
obtain equations for the two-particle off-shell scattering amplitudes which are required 
by the three-particle theory of Faddeev (1961). Even here the complexity of the 
calculation is enormous, and there is no guarantee that a realistic potential is being used. 

The purpose of this paper is to present simple explicit approximations to the Newton 
potential. These are easily calculable and are found only to involve errors which are 
small compared with the likely errors due to using the Newton potential in the first 
place. 

In § 2 we summarize the general theory of the Newton potential. Construction of 
the potential consists firstly of evaluating the parameters cI via (2.7) and (2.14). The 
problem here is to invert the infinite matrix (1 +R), the usual suggestion being to set all 
phase shifts zero beyond a certain point, so that only a finite matrix need be inverted. In 
8 3, however, it is shown that if So and SI are treated exactly, and all other phase shifts to 
first order, then (1 + R)-' = 1 - CR, where Cis  a constant. As a result we obtain explicit 
expressions for the cI. The second step in the calculation of the potential is the solution 
of the system (2.1). In principle this involves inverting large matrices, but within the 
above approximation one can solve for #o and and essentially use the Born 
approximation for the remaining 4,. This is described in § 4. The potential is finally 
deduced from (2.5). 
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In 0 5 numerical results are presented for the Newton potential constructed from the 
phase shifts of Yukawa potentials. We find that the approximations of treatingN phase 
shifts exactly and the rest to first order converge rapidly as N increases. The resulting 
potential shows overall similarity to the original potential, but differs in detail. 
(Attempts to improve the agreement by varying the parameter A of (2.14) were not 
successful.) The results suggest that the Newton potential is good enough if one is only 
interested in accuracies of the order of lo%, and that in this case the approximations 
presented here only add a negligible error. However, off-shell calculations would not 
necessarily suffer from so great an inaccuracy, since the amplitudes will be correct 
on-shell, and only gradually lose accuracy as one extrapolates off-shell. 

The Firsov procedure (Vollmer 1969) for constructing approximate potentials 
requires as input data the phase shifts for non-integer 1. An ad hoc interpolation is 
required, which will only be reliable when there is a large number of significant phase 
shifts, i.e. for long-range interactions. Thus the method is not appropriate where 
short-range forces dominate, as in most Faddeev calculations. 

2. 'Ibe Newton potential 

We summarize here the results of Newton (1962) and Sabatier (1966). If q$(k,r) ,  
1 = 0, 1,2, . . . , satisfy the equations 

where 

and 

d 
dr 

V(T)  = -2(k~)-' - (r-'K(r)) 

where 

(2.5) 

By letting r + CO we can find conditions on the constants cl in order that a given set of 
phase shifts &(k) be obtained from the potential (2.5). These are that 
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where the constants aI satisfy the equations 
m m 1 M/,u, + 2 tan S&flm tan amam = tan SI, 

m = O  m -0 

and 

Sabatier has constructed the vector u, unique to within a constant factor, such that 
Mu = 0, together with a matrix M-' such that (MM-') = (M-'M) = I .  Explicitly 

v2/+1= 0, 

c (:?I 27 
uzI  = (41 + 1)lfj-l 

M Z  = 0, (1 - m) even 
and 

(2.10) 

(2.11) 
where 

T,,,, = (4m + 3)(2m + 1)'/(4m + 1)(21- 2m - 1)(21+ 2m + 2). (2.12). 
In matrix notation, with A the diagonal matrix such that AI, =tan &, and e the column 
matrix with all elements unity, equation (2 .8)  reads 

Ma+AMAa=Ae (2.13) 

the general solution to which is 

a = (1 +R)-'M-'Ae + A ( 1  +R)- 'v  
where 

R = M-lAMA 

(2.14) 

(2.15) 

and A is an arbitrary constant. Sabatier has shown that V(r) will have an oscillating tail 
falling off as r-3'2 unless 

lim (a2/ - a21+1) = 0. (2.16) 
1-m 

This condition requires that 

h = vTA(e -MAa) .  (2.17) 

Note that (2.17) involves ui only for i odd, for which values (2.14) does not involve A ,  
since RI, = 0 unless ( I  - m) is even. Thus A is given explicitly, and the problem of 
constructing the Newton potential consists essentially of inverting the matrix (1 + R )  
and solving the equations (2.1). 

3. The potential parameters 

In this section we calculate the coefficients cl of the Newton potential in the approxima- 
tions where N ( = 0 , l  or 2) phase shifts are treated exactly, and the rest to first order. 
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3.1. N=O 

We consider all the phase shifts to be small, i.e. we work essentially in the Born 
approximation. By (2.15) R is a second-order small quantity and may be neglected. 
Thus 

a (O) = M-'Ae + A  (')U (3.1) 

so that, by (2.7), 

c p =  [-4?T/(21+ l)+l/ujO']-'. (3.3) 

In each of these equations errors are of third order in the S1, thus the equations are in fact 
correct to second order in the S1. (To first order in the S1 (3.3) simplifies to c y )  = ay) . )  

Explicitly 
4) 

A(') = C u2,,, tan s2, 
m =O 

(3.4) 

so that 

U;:'= f u2p2,,,(tan S2, + Tm tan S2,,,+') 
CO 

and a$?+' = - 1 u21u2mTml tan S2,,, 

(3.5) 
m =O m=O 

where the constants v21 and E,,, are given by (2.10) and (2.12) and do not depend on the 
phase shifts. The condition (2.16) is satisfied exactly, so that the potential will have no 
oscillating r-3'2 tail. 

3.2. N= 1 

We now treat So exactly, but all other phase shifts to first order. As Moo = 0, R is a 
first-order small quantity, so that we can set (1 + R)-' = (1 - R). In this section all 
equations will be correct in the above approximation only, although they may contain 
higher order terms. Thus, for example, we shall set 

hMhM-'A =POL\ (3.6) 
where 

a5 

P O  = tan 60 1 ~ 0 , 2 m + 1  tan 82m+1~2+1,0 
m =O 

) 3 7 11 
64 256 

=tan S.(Z tan ti1 +- tan a,+- tan a,+. . . (3.7) 

a first-order small quantity. 

not contribute, 
Using (3.6) and (2.14) we find for the odd a's, to which the term containing A does 
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Hence (2.17), which only uses the odd a's, gives 

A ( ' ) =  (1 -Po)A"'. 

Returning to (2.14) we thus find 

U ( ' ) =  (1 -po)a(o'-p tan a0 
using A"' = tan So+small terms. Here /3 = Ru so that 

P21+1= 0 

~ 2 r  =tan 60 
m 

m =O 
M & m + l  tan 82m+lMZm+l,o 

(3.9) 

(3.10) 

CO 

= -tan 80 T / ~ u Z / U ~ ~  tan 8,,+,/(2m + 1)(2m + 2). (3.11) 

Thus treating So exactly involves only a small modification of the Born approximation. 
Dropping the second-order terms in (3.10) gives explicitly 

m =O 

m 

ai!'= &'+tan2 so 1 u21~zm tan S~,+~(T~, + ~ ~ ~ ) / ( 2 m  + 1)(2m +2) 
m =O 

and 
m 

3.3. N=2 

If both S o  and S1 are treated exactly, then R is no longer considered small, but we can 
still invert (1 + R )  explicitly to first order in the remaining SI. The reason is that, correct 
to this approximation, 

(3.13) R = ( P o  + EO)R 

where Po is given by (3.7), but is no longer small, while 
m 

c0 = tan s1 M1,Zk tan 8&f& 
k = l  

1 15 3 
= tan ~'(64 tan aZ+- tan a4+. . . . 

256 
(3.14) 

The derivation of (3.13) is straightforward but tedious. It follows from (3.13) that, to 
the same approximation, 

(3.15) 

For computational purposes it is most convenient to use (3.15) as it stands, although this 
leads to a violation of (2.16) of second order in the small phase shifts. Alternatively, the 
second-order terms can be dropped on substituting (3.15) into (2.14), when a"'and A(" 

(1 -t R)-' = 1 - (1 +PO+co)-'R. 
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are found to be explicit summations over the small phase shifts, the coefficients in the 
summations not involving further summations. For example 

m 

h‘2’=(1+a)-’ tanSo+ 1 Ag’tanS, 
m =2  

where a = t tan So tan SI,  

(3.16) 

It is straightforward to derive similar expressions for a(’). 

4. The approximate potentials 

Having calculated the cf to the desired accuracy, we must now solve (2.1) to the same 
accuracy in order to deduce the corresponding approximation to the Newton potential. 
To deal with these equations we need a stronger assumption than that the phase shifts 
be small, which could be fortuitous, but that 2: u , ( l L  N) for all r, not just as r + 00. 

For a potential V(r )  the Born approximation 
m 

St = -k lo j : ( k t )  V(r)r2 dr 

becomes small either due to (i) V(r) being small, or (ii) j l (k r )  becoming small as 1 + 00. In 
terms of the Newton potential the two cases correspond to (i) the cl being small (N = O), 
and (ii) L1, becoming small as 1 or m + 00 (N # 0, when no c1 are small). We see from 
(2.1) that both cases are dealt with by working to first order in L1, for 1 or m 3 N .  

If we set 

then (2.1) can be written 

and (2.6) as 

(4.3) 

where 

These equations are exact, but working to first order in 4, for 1 or m 3 N  we see that 
(#1 - ul )  and Sf are small for 1 3 N, so that equations (4.3), for 1 < N, yield N linear 
equations for the (&, -U,) needed in (4.4). 
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4.1. N = O  

Here 
K = K o =  c c,U;+o(S:).  

m =O 

4.2. N =  1 

Here So is not small and do is given by (4.3) i.e. 

(1 + ~ o o ~ o ) ( 4 o - ~ o ) + ~ o =  0. 

K = KO + C O S ; / (  1 +LWCO) 
Thus 

(4.6) 

(4.7) 

4.3. N = 2 

When So and S1 are both to be treated exactly 

The series in the expressions for So, S ,  and KO in (4.7) and (4.8) are not, of course, 
truncated. Numerical differentiation techniques may be used to derive V(r )  from K ( r )  
via (2.5). 

5. Numerical results 

To test the accuracy and validity of the method the input phase shifts were put equal to 
the phase shifts for the Yukawa potentials -e-'/5r and -e-'/r. The resulting approxi- 
mations to the Newton potential were compared with each other and with the original 
potential. An energy of k 2  = 1 was used. 

The first potential is weak enough for the Born approximation to be accurate to 4% 
even for 1 = 0, and in table 1 we see that the approximations converge very rapidly to the 

Table 1. The Newton potential derived from the phase shifts for V(r)  = -e-'/.% at k 2  = 1 in 
the approximation where N (= 0, 1,2) phase shifts are treated exactly and the rest to first 
order, and the approximation where all phase shifts are treated to second order. (- V(r)  is 
shown.) Here a0 = 0.0834; a1 = 0.0210; S2 = 04064; etc. 

Original N=O 
r potential N=O (2nd order) N = 1 N = 2  

0.2 
0.4 
0.6 
0.8 
1.0 
1.5 
2.0 
2.5 
3.0 

0.8187 
0,3352 
0.1829 
0.1123 
0.0736 
0.0298 
0.0135 
0.0066 
0.0033 

0.5728 
0.2757 
0.1725 
0.1182 
0.0841 
0.0368 
0.0148 
0.0052 
0.0020 

0.6136 
0.2872 
0.1745 
0.1161 
0.0803 
0.0332 
0.0134 
0.0055 
0.0029 

0.6122 
0.2869 
0,1747 
0.1166 
0.0808 
0.0335 
0.0133 
0.0053 
0,0027 

0.6128 
0.2872 
0.1748 
0.1167 
0.0809 
0.0336 
0.0135 
0.0053 
0,0026 
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Newton potential. The latter is considerably different from the original potential, 
although of similar overall behaviour. We see that there is little point in going beyond 
the N = 0 case, provided one works to order S:, i.e. takes cf from (3.3) rather than 
setting cf = al, and sets K = KO from (4.5) rather than (4.6). 

For the relatively strong attractive potential V(r)  = -e-'/r, however, we see from 
table 2 that keeping the second-order terms reduces the accuracy of the N=O 
approximation. The N = 2 results show that the Newton potential again only bears a 
superficial resemblance to the original potential. 

Table 2. As for table 1 but for V(r)  = -e-'/r. Here So = 0.4800; SI = 0.1 116; B z  = 0.0327; 
etc. 

Original N=O 
r potential N-0  (2nd order) N = 1 N = 2  

0.2 
0.4 
0.6 
0.8 
1 *o 
1.5 
2.0 
2.5 
3.0 

4.0937 
1.6758 
0.9147 
0.5617 
0.3679 
0.1488 
0.0677 
0.0328 
0.0166 

3.7750 
1.8100 
1.1244 
0.7628 
0.5349 
0.2199 
0.0774 
0.0202 
0.0056 

5.7840 
1.0307 

-0,3624 
-0,8266 
-0.8824 
-0,3602 

0,2043 
0.4079 
0.2975 

5.7 154 
2.0691 
0,9754 
0.4974 
0.2554 
0.0375 
0.0099 
0,0239 
0.0336 

6.0321 
2.1434 
0.9997 
0.5169 
0.2872 
0.1057 
0.0561 
0.0223 
0.0126 

It should be emphasized that this difference is not due to a lack of convergence of the 
approximations, but to the fact that the Newton potential is only one of a wide class of 
phase-equivalent potentials. This is most clearly seen for very weak potentials, where 
we can use the Born approximations to the phase shifts as input, and compare the 
original potential with the N = 0 approximation to the Newton potential. We find no 
better agreement than in table 1. 

The Newton potential is thus seen as far from ideal, although it is the best available 
choice. 
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